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Lemma 2.2 Consider a twin in a graph G. Let a1, ag be the two edges of G corresponding to
the pair of pendants labelled with A in Fig. 4. Let ¢ be the edge corresponding to the remaining
pendant. Let C be an even circuit decomposition of G. Then either ai,a9 and c are in three

different circuits of C or (i), (ii) and (iii) here below hold:
(i) in C there are precisely two circuits (say C1 and Cy) containing edges in {a1, a9, c};
(ii) C1 and C2 have a node in common inside the twin;

(7i) if {a1,a2} is contained in Cy or in Cy then the number of edges of C1 inside the twin
and the number of edges of Co inside the twin are both even.

Proof: Assume in C there exist at most two circuits with an edge in {a1, a2, c}. Then, inside
the twin, C consists of a (possibly empty) family C; of even circuits of the twin plus two paths
P, and P of the twin, where P, has an endnode in v (see Fig. 4). Since the twin has an even
number of edges and all circuits in C; are even then |E(P,)| and |E(P)| have the same parity.
To show (i) and (ii) we must show that P, and P have a node in common. This is certainly
true if one of the two paths has length at least three since in the twin there exists a single
node which is neither an endnode of P, nor an endnode of P. Indeed, this is also true if one
of the two paths has length at least two since the lengths of the two paths have the same
parity. So assume |E(P,)| = |E(P)| = 1. But then, removing the edges of P, and P from
the twin, we remain with a graph #H which consists of two triangles with exactly one node in
common. Graph # has no even circuit decomposition (and is not 3-connected). However C;
is an even circuit decomposition of H — a contradiction.

It only remains to show (iii). Assume by absurd that edge ¢ has an endnode u in common
with P, and |E(P,)| is odd. Denote by h and k the endnodes of P. Note now that the
graph obtained from the twin by removing the three pendants and adding an edge uv and
an edge hk is a K5. Consider the circuits C, = E(P,) U {uv} and C = E(P) U {hk}. Now,
|E(C,)| and |E(C)| are even and C; U {C,} U{C} is an even circuit decomposition of K5 —
a contradiction. O

Proof of Lemma 2.1: Assume on the contrary that {aj,as} is contained in a circuit
Cy4 of C. But then {b1,b} is contained in a circuit Cp of C, with Cp possibly the same as
Ca. However, by Lemma 2.2 (i), the circuit C' of C containing the edge e from Fig. 2 is nei-
ther the same as C4 nor the same as Cg. By Lemma 2.2 (iii), |C| is odd — a contradiction. O

3 A new conjecture

In view of our constructions it seems now natural to consider the following conjecture.

Conjecture 3.1 Every 2-connected eulerian graph with an even number of edges and other
than Ks has an even circuit decomposition or a cut of size at most 4 which is not the star of
a node.
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Figure 2: The gadget and its symbolic representation.
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Note that each gadget has an odd number of edges, and hence, had G to be obtained
precisely as indicated in Fig. 1, then |E(G)| would not be even and G would not be a coun-
terexample. It is not difficult however to refine the gadget as to have an even number of edges,
while preserving the properties expressed by Lemma 2.1. This can be achieved for example
by just chaining two gadgets as in Fig. 3. Clearly, if an odd total number of chainings occur,
then |E(G)| is even. Moreover, it is easy to verify that G is indeed 4-connected and eulerian.
Finally, by Fact 1.3 and Lemma 2.1, G has no even circuit decomposition and hence is a
counterexample.

Figure 3: Chaining two gadgets yields a gadget with an even number of edges.

Verification of Lemma 2.1, while being in principle only a finite problem, will take the
remaining part of this section. The specular symmetry on the vertical axis suggests to regard
the gadget displayed in Fig. 2 as a pair of twins joined on the central node v. As suggested
in Fig. 4, a twin is a close relative of K5. To prove Lemma 2.1, we first consider the local
conditions imposed by a single twin on an hypothetical even circuit decomposition. Note
that, in the case of the twin, some non-twin edges can have an endpoint in v.

Figure 4: Graph K5 and a twin of the gadget.



such graphs do actually exist.

In obtaining G, we will follow the same general approach as in [6, 4, 5]. In this spirit,
a gadget is a configuration with demanding requirements on an hypothetical even circuit
decomposition. The second ingredient in the approach is the skeleton, which acts like a map
telling how the distinct gadgets are mutually connected. In our case, the skeleton S is a Kj
with a pairing of the edges incident at every node, as appears in Fig. 1. It is well know that
S enjoys the following property:

Fact 1.3 The following object does not exist in S: a circuit decomposition of the Ks such
that every circuit in the decomposition takes at most one edge per pair at every node.

Indeed, such a circuit decomposition should be even since the edges in its circuits would
alternate between the outer pentagon and the inner star.

Figure 1: The skeleton, i.e. the top-level diagram of the counterexample.

The counterexample is obtained by exhibiting a gadget, i.e. a subgraph with two pairs
of outgoing edges and forcing, on any hypothetical even circuit decomposition, the “at most
one edge per pair” condition assumed in Fact 1.3.

2 The gadget

Our gadget is shown in Fig. 2, together with its symbolic representation. Four pendants
exit the gadget. The pendants [2], also called semiedges [1, 5], serve as place-marks of the
connections among gadgets, when the gadgets substitute their symbolic representation in the
skeleton structure. In our case, the four pendants come into pairs. Letters A and B, but also
the vertical bar in the symbolic representation of the gadget, serve to indicate the pairing.

The next lemma establishes the local conditions imposed by a gadget configuration on an
hypothetical even circuit decomposition.

Lemma 2.1 Consider a gadget configuration in a graph G. Let {a1,a2} and {b1,b2} be the
pairs of edges of G corresponding to the pairs of pendants of the gadget. Let C be an even
circuit decomposition of G. Then, in C there are precisely two circuits (say Cy and Cy)
containing edges in {a1,as,b1,b2}. Moreover, both Cy and Cy have one edge in {a1,a2} and
one in {b1,b2}.
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Abstract

A circuit decomposition of a graph G = (V, E) is a partition of E into circuits. A
decomposition is said even if all its circuits have even length.

We give a negative answer to a question posed by Jackson asking whether K5 is the
only 4-connected eulerian graph with an even number of edges but no even circuit de-
composition.
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1 Introduction

In a graph G = (V, E), a circuit is a closed simple path. We regard a circuit C as the set of
its edges and say that C is even (odd) when |C| is even (odd). A circuit decomposition of G is
a partition of F into circuits. A decomposition is said even if all its circuits are even. Clearly,
a graph admits a circuit decomposition if and only if it is eulerian, i.e. every node has even
degree. Therefore, for G to admit an even circuit decomposition, G must be eulerian and |E)|
must be even. However, K5, the complete graph on 5 nodes, is an eulerian graph with an
even number of edges but no even circuit decomposition. On the other hand, the following
result of Zhang [8] extends a previous result of Seymour [7] on planar graphs.

Theorem 1.1 (Zhang — 1994) Ewvery 2-connected eulerian graph with an even number of
edges and no subgraph contractible to K5 admits an even circuit decomposition.

In [3], Jackson gave an infinite family of 3-connected eulerian graphs with an even number
of edges but no even circuit decomposition, hence contradicting a conjecture of Zhang [9],
stating that K5 was the only such graph. In the same paper, Jackson conjectured however
that rising the connectivity to 4 would have made the claim true. This question also appeared
as Problem 11.6.10 in [10].

Problem 1.2 (Jackson, Zhang) Is K5 the only 4-connected eulerian graph with an even
number of edges but no even circuit decomposition?

In this paper, we answer the above question in the negative by explicitly constructing
a 4-connected eulerian graph G other than Kj, with an even number of edges but no even
circuit decomposition. From our arguments, it will also be evident that infinitely many of
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